Forschung / Research
Bearbeitung Rahul Yadav, M. Sc. Laufzeit 01.10.2022 bis 30.9.2025 Projektförderung Bundesministerium für Bildung und Forschung (BMBF), Schwerpunkte auf dem Gebiet „Erforschung der Materie an Großgeräten“ Project Partner Overall objective of the project The goal of this proposal is the development of high speed, sensitive and reliable instrumentation beyond state-of-the-art, which will (i) speed up user experiments in order to achieve more and better scientific output for a given beam time and (ii) deliver advanced accelerator diagnostics for operation and research at large-scale facilities, enabling new user operation modes. The collaborative research group combines the strengths of detector designers developing semiconductor-based detectors (THM and TUDa) with existing read-out electronics at accelerator facilities. Detector tests will be carried out at our associated national partners (ACST, DESY, HZDR, KIT, TUDo), enabling rapid test and implementation of new application-oriented developments, which can be easily applied to other THz facilities. [1] „Entdeckt“ Ausgabe 1/2013--- Das Forschungsmagazin aus dem HZDR, ONLINE: https://www.hzdr.de/db/Cms?pNid=2931&pLang=de, last visit: 22.10.2021
Bearbeitung Bernhard Scheible, M. Sc. Laufzeit 01.10.2022 bis 30.9.2025 Projektförderung Bundesministerium für Bildung und Forschung (BMBF), Schwerpunkte auf dem Gebiet „Erforschung der Materie an Großgeräten“ Project Partner Overall objective of the project Free-electron Laser (FEL) facilities contribute to the science community as an advanced tool for experiments. There are different user facilities providing FEL pulses with diverse properties allowing for many experiments. The European XFEL (EuXFEL) at DESY in Hamburg, Germany, is one unique FEL delivering short pulses in the x-ray spectrum with a high repetition rate. It is planned to extend its range to ultra-low bunch charges in the order of 1 pC. This will improve the EuXFEL’s value to the scientific community and will enable varied experiments with ultra-short pulses. Extending the range of possible FEL pulses available to the users, will likely lead to a deeper insight in natural processes and ultimately to new discoveries. To set up a new concept for an ultra-wideband pickup structure for frequencies up to at least 80 to 100 GHz and a novel electro-optical modulator (EOM) for frequencies up to 100 GHz and low drive voltages was the objective of an ongoing project (05K19RO1). For ELBE the beam pipe diameter needs to remain at 43 mm, for the ultra-low charge operation at the EuXFEL it should additionally be reduced to 10 mm minimum with the aim of an overall synchronization of (5 + 1) fs rms (root mean square) for the new broadband pickups. Newly developed EOMs should allow an amplitude modulation of the pulsed optical clock signals by a broadband pickup signal and minimize the noise contribution of the subsequent optoelectronic conversion of the BAM system. In this project, it is planned to finish the design process to achieve a complete design including the new pickup structure with integrated combination network based on a PCB as well as a robust and packaged EOM for the EuXFEL. In an intermediate step, prototypes will be designed and tested at specific facilities, candidates are the accelerator research experiment at SINBAD (ARES) at DESY, the far-infrared linac and test experiment (FLUTE) at KIT, electron linear accelerator with high brilliance and low emittance (ELBE) at the Helmholtz Center in Dresden-Rossendorf (HZDR) or the Shanghai Soft X-ray Free-Electron Laser (SXFEL). Implementation and measurement of custom prototypes at different accelerators allows to examine the dependency on geometry and bunch parameters. With these findings, an optimal design for the EuXFEL as well as FLASH can be found and adaptation to future accelerators will be simplified. At the end of the project, it is foreseen to build and implement the final BAM at the EuXFEL or FLASH and to validate the anticipated resolution to finally provide an operational and completely characterized electro-optical BAM (EO-BAM) capable of single-digit fs resolution measurements with 1 pC bunches. The design may be adapted straightforward for different facilities, according to their design guidelines. [1] S. Reiche et al., "Development of ultra-short pulse, single coherent spike for SASE X-ray FELs," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, pp. 45 - 48, 10 May 2008.
Bearbeitung Amrit Zoad, M. Sc. Laufzeit 01.4.2021 bis 30.9.2023 Projektförderung Bundesministerium für Wirtschaft und Energie (BMWi): Project Partner Gesamtziel des Vorhabens Das Ziel des Vorhabens ist es, neuartige Diagnosesysteme für die longitudinale Strahldiagnose zu entwickeln, deren Einsatzmöglichkeiten die Inbetriebnahme bestehender und zukünftiger Hadronenbeschleuniger wesentlich vereinfachen und einen optimalen Betrieb sicherstellen. Im Vorhaben DFMP soll ein neuartiger Sensor zur Messung von Materialdurchfluß- und -eigenschaften in einer pneumatischen Pelletförderung entwickelt werden. Innovativer Kern des Entwicklungsprojektes ist die Kombination von Mikrowellen-Transmissionsmessung auf Basis eines CRLH Sensors um eine verlässliche bestimmung von Durchfluß und Eigenschaften des Schüttguts zu ermöglichen [1] A. Angelovski, A. Penirschke und R. Jakoby, “Helix-shaped CRLH-TL sensor for inhomoge-neties detection for pneumatic conveyed pulverized solids”. pp. 1 - 4, 2011
Bearbeitung Stephan Klaproth, M. Sc. Laufzeit 01.7.2021 bis 30.6.2024 Projektförderung Bundesministerium für Bildung und Forschung (BMBF), Schwerpunkte auf dem Gebiet „Erforschung von Universum und Materie — ERUM im Themengebiet Teilchen“ Project Partner Gesamtziel des Vorhabens Das Ziel des Vorhabens ist es, neuartige Diagnosesysteme für die longitudinale Strahldiagnose zu entwickeln, deren Einsatzmöglichkeiten die Inbetriebnahme bestehender und zukünftiger Hadronenbeschleuniger wesentlich vereinfachen und einen optimalen Betrieb sicherstellen. Im Vorhaben DIAGNOSE-PASST-THM wird ein neuartiger GHz–Diffraktionsstrahlungsmonitor (Gigahertz Transition Radiation Monitor–GTR) basierend auf der Detektion von kohärenter Diffraktionsstrahlung im GHz-Bereich für die zerstörungsfreie Messung des longitudinalen Strahlprofils für nicht relativistische Strahlen in Hadronen-Linacs erforscht. Die Messung des longitudinalen Phasenraums ist für Inbetriebnahme und Betrieb mehrerer bevorstehender Linacs [1], wie Beispielsweise das UNILAC-Upgrade [2], der pLINAC [3,4] und der CW-LINAC (HELIAC) [5,6], in der FAIR-Anlage sowie für LHC von wesentlicher Bedeutung. Neuartige strahldynamische Konzepte wie KONUS [7], EQUUS [8] und neue RFQ Designs [3,4] erfordern eine deutliche Verbesserung der zeitlichen Auflösung der Längsdiagnostik. [1] P.N. Ostroumov, “Review of beam diagnostics in ion Linacs”, 19th International Linear Accelerator Conference, Chicago, IL, USA, 23 - 28 Aug 1998, pp.724.
Bearbeitung Bernhard Scheible, M. Sc. Laufzeit 01.7.2019 bis 30.6.2022 Projektförderung Bundesministerium für Bildung und Forschung (BMBF), Schwerpunkte auf dem Gebiet „Erforschung der Materie an Großgeräten“ Project Partner Overall objective of the project Numerous advanced applications of X-ray free-electron lasers require pulse durations and time resolutions in the order of only a few femtoseconds (fs). The generation of these pulses and the application of them in time-resolved experiments require synchronization techniques that can simultaneously lock all necessary components to a precision better than the delivered free-electron laser pulse duration. [1] Düsterer, S. et al. Femtosecond X-ray pulse length characterization at the Linac Coherent Light
Bearbeitung Maria Elena Euken, M. Sc. Amrit Zoad, M. Sc. Dr. Stefano Mattiello Laufzeit 15.9.2018 bis 30.8.2020 Projektförderung Projekträger des BMWi: Zentrales Innovationsprogram Mittelstand (ZIM) – Kooperationsprojekt (ZF) Projektpartner Ziel des Projektes In automatisierten Pulverbeschichtungsanlagen werden für den Beschichtungsvorgang Injektionsröhrchen zum Ansaugvorgang des Pulvers aus der Pulverküche verwendet. Zur Bestimmung der aktuellen Durchflussmenge des Pulvers soll ein mikrowellenbasiertes Messsystem entwickelt werden. Ziel ist es, durch die Bestimmung des Durchflusses die Pulverfördermenge konstant zu halten und durch die sich ändernde Luftmenge auf den Abnutzungsgrad des Injektors zu schließen. Herausforderung sind dabei die Partikelgeschwindigkeiten und eine inhomogene Verteilung der Pulvermenge.
Bearbeitung Amrit Zoad, M. Sc. Laufzeit 1.7.2018 bis 30.6.2021 Projektförderung Kooperationsprojekt Projektpartner Ziel des Projektes Mikrowellenbasierte Feuchtesensoren arbeiten nach dem Prinzip der elektromagnetischen Aquametrie. Hohe dielektrische Eigenschaften von Wasser und Wasserverbindungen im Mikrowellenbereich erlauben eine sehr hohe prinzipbedingte Sensitivität solcher Sensoren. Die Arbeitsfrequenz im Mikrowellenbereich begünstigt zusätzlich die drahtlose Kommunikation zwischen Sensor und Datenerfassung. Sie erlaubt den Aufbau sehr kostengünstiger, vollständig passiver Sensoren (d.h. Sensoren, die ohne zusätzliche Energiequellen auskommen). Die Entwicklung neuartiger Sensorstrukturen auf Basis linkshändiger Leitungsstrukturen ermöglicht zudem bei gleichbleibender Frequenz im Vergleich zu konventionellen Techniken die Miniaturisierung der Sensoren bei gleichzeitiger Verbesserung der Sensitivität. Ziel des Promotionsvorhabens ist es diese Vorteile zu kombinieren und damit neuartige, passive, kompakte mikrowellenbasierte Feuchtesensoren zu entwickeln, die mit Hilfe von Funknetzen ausgelesen werden können. Durch die kontinuierliche Überwachung von Feuchte während eines Trocknungsprozesses kann beispielsweise die Zeitdauer der Herstellungsphasen im Bauhandwerk verkürzt und die damit verbundenen Kosten stark reduzieren werden. Auch kann durch eine kontinuierliche Überwachung, von feuchtigkeitsexponierten Bereichen in bestehenden Gebäuden oder Anlagen, sowie in denkmalgeschützten Objekten, ein rechtzeitiges Erkennen und Eingreifen erfolgen und so hohe Restaurations-/Reparaturkosten vermieden werden. Es wird eine Installation von kontinuierlichen Warnsystemen auch an schwer zugänglichen Stellen möglich.
Common PhD. project of the Institut für Mikrowellentechnik und Photonik at Technische Universität Darmstadt (TUDa) in collaboration with the Technische Hochschule Mittelhessen (THM). Early Stage Researcher (PhD candidate) Angel Blanco Granja, M. Sc. Project duration 1.3.2016 bis 29.2.2020 Funding agency This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 675683. Project goal CELTA is the acronym for Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications. CELTA aims to produce the next generation of researchers who will enable Europe to take a leading role in the multidisciplinary area of utilizing Terahertz technology for applications involving components and complete systems for sensing, instrumentation, imaging, spectroscopy, and communications. All these technologies are keys to tackling challenges and creating solutions in a large number of focus areas relevant for the societal challenges identified in the Horizon 2020 program. To achieve this objective, CELTA is comprised of 11 leading research institutions and has assembled a comprehensive research training program for all the 15 early-stage researchers (ESRs). CELTA integrates multidisciplinary scientific expertise, complementary skills, and experience working in academia and industry to empower ESRs to work in interdisciplinary teams, integrate their activities, share expertise, and promote a vision of a converged co-design and common engineering language between electronics and photonics for Terahertz technologies. Fundamental investigations on Phased-Array Antenna configurations consisting of broadband antenna elements, tunable dielectric delay line phase shifters partly filled liquid crystal as tunable material, passive combining networks, Schottky detectors with large video bandwidth as well as post detection electronics. This project aims for real time measurements at a target frequency of 90GHz and a detection scheme based on an envelope detector with a bandwidth of 10 GHz or higher as a part of the beam steering demonstrator. Website http://www.celta-itn.eu
Bearbeitung Dr. Stefano Mattiello Laufzeit 1.7.2016 bis 30.6.2019 Projektförderung Bundesministerium für Bildung und Forschung (BMBF), Schwerpunkte auf dem Gebiet „Erforschung kondensierter Materie an Großgeräten“ Projektpartner Ziel des Projektes Ziel dieses Projektes ist die Minimierung des Ankunftszeitjitters eines extern injektierten Elektronenstrahls in einem plasmagetriebenen Wake-Feld Beschleuniger.HisTeD: High Speed Room Temperature Terahertz Devices for Beam Alignment and Diagnostics
The added value of this consortium is that the applicants will share expensive post-detection equipment for their developments and benchmark their devices in a Round Robin in order to demonstrate the strengths and limitations of each approach enabling accelerator facilities to determine the best detector choice for the respective applications.
[2] LOEWE STT Jahresbericht 2014: ISBN 978-3-00-049242-6
[3] S.Regensburger, el al., Broadband THz detection from 0.1 to 22 THz with large area field-effect transistors. Optics express, 23(16), 20732-20742 (2015)
[4] Steffen, Bernd & Gerth, Ch & Caselle, Michele & Felber, Matthias & Kozak, Tomasz & Makowski, Dariusz & Mavric, Uros & Mielczarek, Aleksander & Peier, P. & Przygoda, K. & Rota, Lorenzo. (2020). Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates. Review of Scientific Instruments. 91. 045123. 10.1063/1.5142833.
[5] S. Preu et al., "Ultra-fast transistor-based detectors for precise timing of near infrared and THz signals," Opt. Express 21, 17941-17950 (2013)
[6] A. Penirschke et al., Compact Quasi-Optical Schottky Detector With Fast Voltage Response, 39th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), pp. 1 – 2 (2014)
[7] S. Preu, M. Mittendorff, S. Winnerl, O. Cojocari, and A. Penirschke, “THz Autocorrelators for ps Pulse Characterization Based on Schottky Diodes and Rectifying Field-Effect Transistors”. In: IEEE Transactions on Terahertz Science and Technology ISSN 2156-342X, (2015)ULCBAMs: Electro-Optical Bunch-Arrival-Time Monitors for Ultra-Low Charges
This new 1 pC mode will cross the limits of the current beam instrumentation . Since the stable operation relies on a precise synchronization of all sub-systems and therefore also on the arrival-time measurement with single-digit fs resolution, a refined solution is necessary.
The preferred option for arrival-time measurement in a large-scale FEL is the electro-optical (EO) method, implemented in FLASH, the EuXFEL and other notable facilities, as the SwissFEL, Fermi@ELETTRA, ELBE and soon also SHINE. It provides quasi non-invasive single bunch measurement of the arrival-time deviation to a reference laser pulse, which is synchronized to the main radio frequency (rf) clock .
[2] F. Löhl et al., "Electron bunch timing with femtosecond precision in a superconducting free-electron laser," Physical Review Letters, vol. 104, no. 14, p. 144801, April 2010.[3] A. Angelovski et al., "Evaluation of the cone-shaped pickup performance for low charge sub-10 fs arrival-time measurements at free electron laser facilities," Phys. Rev. ST Accel. Beams (Physical Review Special Topics - Accelerators and Beams), p. 012801, 30 January 2015.
[4] V. Arsov et al., "Design and Commissioning of the Bunch Arrival-Time Monitor for SwissFEL," in Proceedings of the 6th International Beam Instrumentation Conference (IBIC2017), Grand Rapids, MI, USA, 2017.
[5] M. Kuntzsch et al., "Optical synchronization and electron bunch diagnostic at ELBE," in Proceedings of IPAC2013, Shanghai, China, 2013.
[6] M. K. Czwalinna et al., "Beam Arrival Stability at the European XFEL," Proc. of the 12th Int. Particle Acc. Conf., p. 3714 – 3719, 2021.
[7] A. Penirschke et al., "Concept of a novel high-bandwidth arrival time monitor for very low charges as a part of the all-optical synchronization system at ELBE," in Proceedings of 8th Int. Beam Instrum. Conf (IBIC2019), Malmö, Sweden, 2019.
[8] B. E. J. Scheible et al., "Pickup development for short low-charge bunches in x-ray free-electron lasers," Physical Review Accelerators and Beams, p. 072803, 21 July 2021.
[9] B. E. J. Scheible et al., "Bunch Arrival-Time Measurement with Rod-Shaped Pickups on a Printed Circuit Board for X-Ray Free-Electron Lasers," in Proceedings of the 9th Int. Beam Instrumentation Conf. (IBIC'21), Pohang, Korea (remote), 2021.DFMP: Entwicklung eines Sensorsystems zur simultanen und echtzeitfähigen Durchfluss- und Feuchtemessung sowie einer entsprechenden Heizungsregelung mit einer Effizienzsteigerung um 15 %
,,Zentrales Innovationsprogramm Mittelstand (ZIM)"
Projektform: FuE-Kooperationsprojekt
[2] A. Penirschke und R. Jakoby, "Microwave Mass Flow Detector for Particulate Solids Based on Spatial Filtering Velocimetry" in IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3193-3199, 2008
[3] A. Penirschke, M. Puentes, M. Schüßler und R. Jakoby,” Massendurchflusssensor für pneumatisch geförderte, pulverisierte Feststoffe in Förderleitungen, basierend auf links-händigen Leitungsstrukturen “ in tm – Technisches Messen, 77, pp. 1 – 6, 2010
[4] A. Penirschke, A. Angelovski und R. Jakoby, „Mikrowellenbasierter Massendurchfluss-sensor auf Basis von zweidimensionalen Linkshändigen Leitungsstrukturen“ in tm – Techni-sches Messen, 79, pp. 1 – 9, 2012
[5] A. Penirschke, M. Schüßler und R. Jakoby, „Microwave Flow Sensor based on a Left-Handed Transmission Line Resonator” in IEEE/MTT-S International Microwave Symposium, Honolu-lu, HI, 2007, pp. 393 - 396, 2007DIAGNOSE PASST-THM: Paket-, Strahl- und Puls-Strukturanalyse von GHz bis THz - Entwicklung eines Transition Radiation Monitors zur Bunchstrukturanalyse
[2] L. Groening et al., “Upgrade of the Unilac for Fair”, Proc. Of IPAC 2015, https://doi.org/10.18429/JACoW-IPAC2015-TUXB2.
[3] C.M. Kleffner et al., “Status of the FAIR pLINAC”, Proc. of IPAC 2017, Copenhagen
[4] Technical Design Report (2008), Proton Linac, www.edms.cern.ch/document/994418/1.
[5] W. Barth et al., “A superconducting CW-LINAC for heavy ion acceleration at GSI”, EPJ Web of Conferences 138, 01026.
[6] M. Miski-Oglu et al., “Steps Towards Superconducting CW-linac for Heavy Ions at GSI”, Proceedings, 18th International Conference on RF Superconductivity (SRF2017), 10.18429/JACoW-SRF2017-MOPB024.
[7] U. Ratzinger et al., “Combined zero degree structure beam dynamics and applications”, Phys. Rev. Accel. Beams 22, 114801 – Published 12 November 2019.
[8] S. Minaev et al., Superconducting, energy variable heavy ion linac with constant multicell cavities of CH-type”, Phys. Rev. ST Accel. Beams 12, 120101 – Published 2 December 2009.
[9] R. Singh, T. Reichert, and B. Walasek Hoehne, “Transition radiation based diagnostics for non-relativistic ion beams”, IBIC 2020 - 9th International Beam Instrumentation Conference: 14-18 September 2020, Remote, Brazil, hosted by Brazilian Synchrotron Light Laboratory (LNLS), poster TUPP21.
[10] A.V. Feschenko, “Methods and instrumentation for bunch shape measurements”, Proceedings of the 2001 Particle Accelerator Conference, Chicago.ADVANCED BAM: Ultra Low Charge Bunch Arrival-time Monitor – fs Resolution for ultra low bunch charge pulsed- and CW-beams
Many large-scale free-electron laser facilities are primarily synchronized using an electronic radio-frequency reference clock and electronic phase-locking techniques. However, by relying solely on electronic phase-locking techniques, it has not been possible to synchronize these pulses to better than 100 fs root mean square (rms) [1-3], which prevents the use of FELs at their full potential and inhibits their future development.[5]
To improve the experimental conditions at existing facilities and to enable future development of seeded FELs, a new all-optical synchronization system at FLASH and later XFEL was implemented, which is based on pulsed optical signals rather than electronic RF signals. [6, 7] In 2015, an overall synchronization of (28 ± 2) fs rms or (66 ± 5) fs full width at half maximum (FWHM) while delivering (90 ± 18) fs FWHM FEL photon pulses at FLASH could be demonstrated.[15] Recent studies with the state-of-the-art Bunch Arrival-time Monitors show that a measurement resolution of sub-10 fs at FLASH and 40 fs for XFEL can be reached for bunch charges of 50 pC or more.[8] For lower bunch charges and thus for FEL pulse durations of only a few femtoseconds this resolution is not sufficient.[8]
The all-optical synchronization system can also be applied to continuous wave (CW) operated electron accelerators such as ELBE at the Helmholtz Zentrum Dresden Rossendorf. ELBE has been upgraded in order to produce short electron pulses with 150 fs duration and will be capable for highly charged bunches of up to 1 nC. Several short pulse secondary radiation sources are driven by these ultrashort electron bunches. In order to enable highly resolved pump-probe experiments with table top laser sources pump and probe beams have to be synchronized on a 100 fs time scale. In collaboration with DESY, Hamburg the all-optical synchronization system is used to ensure a timing stability on the few 10 fs scale. [5] The sensitivity of the bunch arrival-time monitor can be increased either by increasing the bunch charge, decreasing the beam pipe diameter or increasing the bandwidth of the pickup structure and the RF bandwidth of the attached electro-optical modulator (EOM) to ensure sufficient signal strength to drive the attached EOM. CW beams carry a high beam current which can lead to serious damage of the beam tube when they get in contact with it. Therefore the minimum beam line diameter and the diameter of diagnostic pickups are limited to prevent accidental damages. Thus, only for ultra-low charge operation the beam pipe diameter can be reduced.
In this project, a new concept for an ultra-wideband pickup structure for frequencies up to at least 100 GHz and a novel Electro-optical modulator for RF frequencies up to 100 GHz and low drive voltages. For CW operation at ELBE the bandwidth will be increased to at least 100 GHz when the beam pipe dimension remains constant at 43 mm. For ultra-low charge operation down to 1 pC at XFEL the beampipe dimension can be reduced to 10 mm minimum with the aim of an overall synchronization of (5 + 1) fs rms for the new broadband pickups. New developed EOMs will allow an amplitude modulation of the broadband pickup signal to the laser pulse.
Source free-electron laser. New J. Phys. 13, 093024 (2011).
[2] Schorb, S. et al. X-ray optical cross-correlator for gas-phase experiments at the Linac Coherent Light
Source free-electron laser. Appl. Phys. Lett. 100, 121107 (2012).
[3] Beye, M. et al. X-ray pulse preserving single-shot optical cross-correlation method for improved
experimental temporal resolution. Appl. Phys. Lett. 100, 121108 (2012).
[4] Grguraš, I. et al. Ultrafast X-ray pulse characterization at free-electron lasers. Nat. Photon. 6, 852–857
(2012).
[5] Schulz, S. et al. Femtosecond all-optical synchronization of an X-ray free-electron laser, Nat. Comm,
DOI: 10.1038/ncomms6938 (2015)
[6] Kim, J., Cox, J., Chen, J. & Kärtner, F. X. Drift-free femtosecond timing synchronization of remote
optical and microwave sources. Nat. Photon. 2, 733–736 (2008).
[7] Schulz, S. et al. Past, present and future aspects of laser-based synchronization at FLASH. Proc.
IBIC2013 753–756 (2013).
[8] Czwalinna, M.: Internal communication, DESY, 2018ZIM - Kooperationsprojekt: Mikrowellenbasiertes Durchflussmesssystem im Pulverumfeld
Erforschung neuartiger Sensorstrukturen zur Bestimmung der Prozessfeuchte sowie des Feuchtigkeitsgehaltes für industrielle Anwendungen
EU - European Training Network CELTA: Convergence of Electronics and Photonics Technologies for Enabling Terahertz Applications
MAKE-PWA: Minimierung des Ankunftszeitjitters für lasergetriebene Plasma-Wakefield-Beschleuniger
Für einen optimalen Betrieb von plasmagetriebenen Wake-Feld Beschleunigern ist eine direkte Synchronisation zwischen den plasmaerzeugenden Wellen und den zu beschleunigenden Elektronenpaketen mit höchster Präzision unabdingbar. Um einen optimalen Betrieb zu ermöglichen, sind neben präzisen Ankunftszeitmonitoren zusätzlich auch aktive Stabilisierungssysteme notwendig, die den verbleibenden Ankunftszeitjitter weiter minimieren können. Dieses Problem tritt in allen Plasma-Wake-Feld Beschleunigern auf und ist nach dem heutigen Stand der Technik noch ungelöst.
Da die Periodendauer eines Plasma Wake-Felds typischerweise nur wenige Femtosekunden beträgt, wird in diesem Teilprojekt die Synchronisation des Elektronenpakets zum plasmatreibenden Laserpuls bei SINBAD durch ein neuartiges „Schuss-zu Schuss“ Synchronisationssystem verbessert. Das System synchronisiert aktiv die zu beschleunigenden Elektronenpakete durch direkte Interaktion mit dem erzeugten THz-Puls und verspricht einen Synchronisationsjitter von 1fs oder weniger.