• Springe direkt zur Haupt-Navigation (Drücke die Enter Taste).
  • Springe direkt zum Inhalt (Drücke die Enter Taste).
  • Intelligente Systeme und Regelungstechnik: Springe direkt zur Bereichs-Navigation (Drücke die Enter Taste).

THM Logo

  • Start
  • Studium
    • Sie wollen studieren
      • Unsere Studienangebote
      • Start@IEM
      • Warum IEM?
      • Warum THM Friedberg?
      • Warum Elektrotechnik studieren?
      • Elektro- und Informationstechnik (Bachelor)
      • Medieninformatik (Bachelor)
      • Medieninformatik (Master)
      • Control, Computer and Communications Engineering (Master)
    • Sie starten
      • Erstsemester
      • Brückenkurse
      • STEP - Studieneinführungsprogramm
      • IT Services - Erste Schritte
    • Sie studieren
      • Infocenter für Studierende
      • Wichtige Links
      • Labore
      • Praktikum
      • Prüfungen, Klausuren
      • Cisco Networking Academy
      • Exkursionen und Seminare
      • meet@ THM Friedberg
    • Sie haben studiert
      • Absolventenfeier
      • Absolventinnen und Absolventen
      • Alumni
      • Freunde und Förderer
      • Weiterbildung
    • Schule & IEM
      • RobertaRegioZentrum
      • studieren probieren
      • FIT - Friedberger Informationstage
      • HIT - Hochschulinformationstage
      • Gießener Beratungsabend
  • Forschung
    • Forschung am Fachbereich IEM
      • Arbeitsgruppen / Projekte
      • Forschungssemester
      • TransMIT-Zentren
    • Wissenschaftlicher Nachwuchs
      • Abgeschlossene Promotionen
      • Promovieren über die THM
      • Strukturierte Doktorandenausbildung
    • Aktuelles aus der THM-Forschung
  • Fachbereich
    • Team
      • Über uns
      • Dekanat
      • Professoren
      • Mitarbeiter/-innen
      • Lehrbeauftragte
      • Ehemalige
    • Labore
      • Laborübersicht
      • A/V, Web & Mobile (Medienlabor)
      • Computer Aided Engineering und industrielle Bildverarbeitung
      • Computer Engineering
      • Digitaltechnik und Elektronik
      • Elektrische Energieversorgung
      • Elektrische Maschinen
      • Elektrische Messtechnik
      • Elektronische Energieumformung
      • Faseroptik und EM-Sensorik
      • Gebäudeautomation / Internet of Things (GAIOT)
      • Hoch- und Höchstfrequenztechnik
      • IC-Design
      • Industrielle Automatisierungstechnik
      • Intelligente Systeme und Regelungstechnik
      • Internetsicherheit
      • Rechnernetzwerktechnik
    • Gremien
      • Ausschüsse
      • Fachbereichssrat
      • Fachschaftsrat
    • Service / Medien
      • Aktuelles / News
      • Wichtige Links
      • Bildergalerie
      • Videogalerie
      • Absolventinnen und Absolventen
  • Internationales
Startseite Forschung > Forschung am Fachbereich IEM > Arbeitsgruppen / Projekte > Intelligente Systeme und Regelungstechnik > Projekte

Projekte

EMoNu (E-Mobilität Kommunaler Nutzfahrzeuge) 

EMoNu (E-Mobilität Kommunaler Nutzfahrzeuge) 

  • Förderer: HA Hessen Agentur GmbH
  • Hessen Agentur-Projektnummer: 579/18-02
  • Hessen Modell Projekte: Förderung der Elektromobilität
  • Laufzeit: 01.04.2018 – 31.10.2020
  • Antragsteller: THM, Kompetenzzentrum Automotive, Mobilität und Materialforschung (AutoM)
  • Projekt-Partner: HAKO GmbH und EDAG Engineering GmbH

Das Ziel dieses Projektes ist die Entwicklung eines vollelektrischen, kommunalen Nutzfahrzeug mit folgenden Alleinstellungsmerkmalen:

  • Multifunktionales (für mehrere Aufgaben eines städtischen Bauhofs geeignetes) Leichtbau-Chassis (Leichtbau-Struktur)
  • Adaptive und auf die Erhöhung der Effizienz ausgerichtete Antriebsregelung unter Berücksichtigung unterschiedlicher Betriebsarten des Fahrzeugs
  • Intelligentes Batteriemanagement-System
  • Datenerfassungssystem zur Diagnostik des Fahrzeugzustandes
  • Connectivity- und ein übergeordnetes Energiemanagement-System zur Steuerung kooperativer Ladevorgänge einzelner Fahrzeuge unter Berücksichtigung des Ladezustandes, der GPS-Position einzelner Fahrzeuge und der in der Umgebung vorhandenen Ladeinfrastruktur sowie Strompreise und Minimierung der Netzbelastung
isBMS (intelligentes skalierbares Batteriemanagement-Systems)

isBMS (intelligentes skalierbares Batteriemanagement-Systems)

  • Förderer: HA Hessen Agentur GmbH
  • Hessen Agentur-Projektnummer: 544/17-26
  • Hessen Modell Projekte: LOEWE 3: KMU-Verbundvorhaben
  • Laufzeit: 01.07.2017 – 31.06.2019
  • Antragsteller: THM, Intelligente Systeme und Regelungstechnik (ISRT)
  • Projekt-Partner: ISABELLENHÜTTE

Das Ziel des Projektes ist die Entwicklung eines intelligenten skalierbaren Batteriemanagementsystems zur vollständigen Steuerung und Überwachung einer Li-Ion Batterie.

Spezieller sind dem Projekt folgende Anforderungsprofile ausgesetzt:

  • Prototyp des BMS mit implementierten Grundfunktionen (Messung von Spannungen, Strömen und Temperaturen, Ausgleich einzelner Zellen)
  • Metrologische Unterstützung (Genauigkeitsanalyse des Gesamtsystems, Kalibrierungsverfahren und Werkzeuge)
  • Echtzeitfähige und auf einem herkömmlichen Steuergerät ausführbaren Algorithmen zur Identifikation von elektrischen Parametern (Leerlaufspannung, Innenwiderstand, Diffusionskapazität, SoC, SoH, Leistungskapazität)
Modellbasierte prädiktive Regelung permanentmagneterregter Synchronmaschinen im Antriebsstrang von Elektrofahrzeugen

Modellbasierte prädiktive Regelung permanentmagneterregter Synchronmaschinen im Antriebsstrang von Elektrofahrzeugen

Aktuell werden permanentmagneterregte Synchronmaschinen (PMSMs), die z. B. bei den europäischen und asiatischen Automobilherstellern als Antrieb für Elektro- und Hybridfahrzeuge zum Einsatz kommen, mithilfe der PI-basierten feldorientierten Regelung geregelt. Jedoch bietet der Ansatz der modellbasierten prädiktiven Regelung (Model Predictive Control, MPC) gegenüber den klassischen Regelalgorithmen zwei signifikante Vorteile. MPC nutzt das Modell der Regelstrecke, um das zukünftige Verhalten des Systems vorherzusagen und abhängig von der Sollgrößentrajektorie die Trajektorie der Stellgröße zu planen.

Dabei wird ein Gütefunktional, welches die Regelabweichung und die Stellgrößen beinhaltet, jeden Abtastschritt über die Stellgrößentrajektorie minimiert. Die Stellgrößenbeschränkungen können entsprechend durch Nebenbedingungen zu diesem Minimierungsproblem mathematisch berücksichtigt werden. Wird die Regelstrecke als ein lineares System betrachtet, resultiert das Minimierungsproblem in ein quadratisches Programm mit Nebenbedingungen, welches in Echtzeit problemlos gelöst werden kann. Somit kann die Spannungsbegrenzung, bedingt durch die endliche Zwischenkreisspannung, im Regler mathematisch erfasst werden. Weiterhin können neben der Regelabweichung und Stellgrößen weitere Größen in das Gütefunktional des Reglers aufgenommen werden. In Bezug auf die PMSM kann die Regelung dann z. B. hinsichtlich der Verlustleistung optimiert werden.

Modellbasierte Fehlererkennung in permanentmagneterregten Synchronmaschinen im Antriebsstrang von Elektrofahrzeugen

Modellbasierte Fehlererkennung in permanentmagneterregten Synchronmaschinen im Antriebsstrang von Elektrofahrzeugen

Grundsätzlich sind permanentmagneterregte Synchronmaschinen (PMSMs) sehr robust. Dennoch können im Laufe ihres Betriebslebens Fehler auftreten. Einer der häufigsten Fehler betrifft die Statorspulen der PMSM. Es handelt sich um den sogenannten Zwischenwindungskurzschluss. Dabei werden mehrere Windungen in einer der Statorspulen kurzgeschlossen, weil die Isolierungsschicht dazwischen aufgrund verschiedener Belastungen wie z. B. thermischen Stress oder Alterung zerstört wird. Tritt ein Zwischenwindungskurzschluss auf, kommt es zu einer Kurzschlussschleife in den betroffenen Windungen. Aufgrund der Permanentmagnete im Rotor wird in der Kurzschlussschleife ein von der Drehzahl abhängiger Strom induziert. Bei hohen Drehzahlen kann dieser Kurzschlussstrom den für den Motor maximal zulässigen Strom um ein Vielfaches übersteigen und zur Zerstörung des Motors führen. Wird der Fehler dagegen schnell entdeckt, können entsprechende Gegenmaßnahmen getroffen und der Motor so vor Zerstörung bewahrt werden.

Ein weiterer Fehler betrifft die Permanentmagnete im Rotor der PMSM. Hohe Temperaturen sowie inverse Magnetfelder, die z. B. im Feldschwächbetrieb erzeugt werden, demagnetisieren die Rotormagnete partiell, sodass ihr Magnetfeld nicht mehr über den gesamten Rotorumfang konstant ist. Als Folge bekommt das von der PMSM erzeugte Drehmoment einen Rippel, was in eine Zunahme der Blindleistung und Vibrationen des Motors resultiert.

Der Zwischenwindungskurzschluss und die Demagnetisierung der Rotormagnete sind Fehler, die den Motor selbst betreffen. Wird der Motor allerdings geregelt, setzt es den Einsatz bestimmter Sensoren voraus. Im Hinblick auf PMSM werden dabei ein Winkelsensor zur Bestimmung der Rotorposition sowie mindestens zwei Stromsensoren benötigt. Auch die Sensoren können durch verschiedene Defekte beeinträchtigt werden oder sogar komplett ausfallen.

Zur Diagnose der beschriebenen Fehler erforscht unsere Arbeitsgruppe den Einsatz modellbasierter Detektionsalgorithmen. Dabei läuft auf dem Steuergerät neben der Regelung ein Modell der PMSM. Mithilfe des Modells wird das Verhalten des Motors vorhergesagt und mit der Realität verglichen. Treten dabei starke Unterschiede zwischen der Realität und dem Modell auf, weist dies auf einen Fehler im Motor hin. Durch die Analyse der Abweichung kann der Fehler anschließend erkannt werden.

 

Intelligente Systeme und Regelungstechnik

  • Einleitung / Introduction
  • Team
  • Projekte
  • Kooperationen
  • Publikationen
  • Workshops / Conferences

Kontakt

Prof. Dr.-Ing. habil. Alexander Kuznietsov

  • Wilhelm-Leuschner-Straße 13
    D - 61169 Friedberg
    Raum A3.U1.06
  • +49 6031 604-2097
  • Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!

Kontakt

Technische Hochschule Mittelhessen
University of Applied Sciences
Fachbereich 11 - IEM
Informationstechnik - Elektrotechnik - Mechatronik

Wilhelm-Leuschner-Straße 13
D - 61169 Friedberg
+49 6031 604-200
+49 6031 604-184
  dekanat@iem.thm.de

Besucheradresse

Campus Friedberg

Dekanat & Sekretariat 
Raum A2.1.05 & A2.1.06

Wilhelm-Leuschner-Straße 13
D - 61169 Friedberg

Social Media

instagram
thm.de
|
Datenschutz
|
Erklärung zur Barrierefreiheit
|
Impressum