Damian Czarnecki
Diese E-Mail-Adresse ist vor Spambots geschützt! Zur Anzeige muss JavaScript eingeschaltet sein!
D10.0.15
+49 (0) 641 309 2556
+49 (0) 641 309 2977

Institut:

Arbeits- und Forschungsschwerpunkte:

  • Monte Carlo Simulationen zum Strahlungstranport hochenergetischer Partikel in der Medizin
  • Dosimetrie ionisierender Strahlung

Lehrveranstaltungen:

Bachelor Biomedizinische Technik und Bacheor Medizinische Physik und Strahlentherapie:
  • Einführung in das Studium und Berufsfeld
  • Auswertung wissenschaftlicher Daten
  • Praktikum: Angewandte Medizinische Physik
Master Medizinische Physik (MP):
  • Monte-Carlo Simulationen in der Medizinischen Physik
  • Übung: Dosimetrie ionisierender Strahlung

Publikationen:

  1. Czarnecki D, Zink K, Pimpinella M, Borbinha J, Teles J, Pinto M.
    Monte Carlo calculation of quality correction factors based on air kerma and  absorbed dose to water in medium energy x-ray beams.
    Phys. Med. Biol. 65 (2020) 245042 [IF: 2.883]
    https://doi.org/10.1088/1361-6560/abc5c9
  2. Czarnecki D, Poppe B, Zink K.
    Impact of new ICRU Report 90 recommendations on calculated correction factors for reference dosimetry.
    Phys. Med. Biol. 63 (2018) 155015 [IF: 3.03]
    https://doi.org/10.1088/1361-6560/aad148
  3. Caccia B, Le Roy M, Blideanu V, Andenna C,  Arun C, Czarnecki D, El Bardouni T, Gschwind R,  Huot N, Martin E, Zink K, Zoubair M, Price R, de Carlan L.
    EURADOS intercomparison exercise on Monte Carlo modelling of a medical
    linear accelerator.
    Ann Ist Super Sanità 53 (2017) 314-321 [IF: 0.899]
    http://dx.doi.org/10.4415/ANN_17_04_07
  4. Czarnecki D, Poppe B, Zink K
    Monte Carlo based investigations on the impact of removing the flattening filter on beam quality specifiers for photon beam dosimetry
    Med. Phys. 44 (2017) 2569-2580 [IF: 2.496]
    http://dx.doi.org/10.1002/mp.12252
  5. Horst F, Czarnecki D, Harder D, Zink K
    The absorbed doses to water and the TLD-100 signal contributions associated with the neutron contamination of an 18 MV photon beam
    Rad. Meas. 103 (2017) 331 - 335 [IF: 1.071]
    http://dx.doi.org/10.1016/j.radmeas.2017.02.007
  6. Horst F, Czarnecki D, Zink K.
    The influence of neutron contamination on dosimetry in external photon beam radiotherapy
    Med. Phys. 42 (2015) 6529-6536 [IF: 2.635]
    http://dx.doi.org/10.1118/1.4933246
  7. Horst F, Fehrenbacher G, Radon T, Kozlova E, Rosmej O, Czarnezki D, Schrenk O, Breckow J, Zink K
    A TLD-based ten channel system for the spectrometry of bremsstrahlung generated by laser-matter interaction.
    Nuc. Inst. Meth. Phys. A 782 (2015) 69-76; [IF: 1,316]
    http://dx.doi.org/10.1016/j.nima.2015.02.010
  8. Zink K, Czarnecki D, Looe H K, von Voigts-Rhetz P, Harder D
    Monte Carlo study of the depth-dependence fluence perturbation in parallel-plate chambers in electron beams
    Med. Phys. 41 (2014) 111707; [IF: 3.012]
    http://dx.doi.org/10.1118/1.4897389
  9. von Voigts-Rhetz P, Czarnecki D, Zink K
    Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams.
    Z Med Phys 24 (2014) 216-223; [IF: 2.963]
    http://dx.doi.org/10.1016/j.zemedi.2013.12.001
  10. Czarnecki D, Zink K
    Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields
    Phys. Med. Biol. 58 (2013) 2431-2444; [IF: 2.70]
     https://iopscience.iop.org/article/10.1088/0031-9155/59/3/791
  11. Czarnecki D, Wulff J, Zink K.
    The influence of LINAC spot size on scatter factors.
    Metrologia 49 (2012) S215-S218; [IF: 1.90]
     https://iopscience.iop.org/article/10.1088/0026-1394/49/5/S215/meta