Projektmitarbeiter Sascha Wörner bei der Aufnahme quasistatischer Werkstoffkennwerte im ZugversuchMit Fragen der Herstellung von metallischen Serienbauteilen in der Automobil- und Maschinenbauindustrie mittels 3D-Druck befasst sich ein Forschungsprojekt an der TH Mittelhessen. Die Friedberger Professoren Dr. Udo Jung und Dr. Heinrich Friederich vom Kompetenzzentrum Verkehr – Mobilität – Automotive untersuchen ein neues Verfahren, das Metall-Laserstrahlschmelzen. Partner sind FKM Sintertechnik aus Biedenkopf, Sanden International (Europe) mit Sitz in Bad Nauheim und Henkel Modellbau aus Breidenstein. Das Land Hessen fördert das Vorhaben mit 300.000 Euro.

Metall-Laserstrahlschmelzen ist eine Technik, mit der ein Produkt schichtweise aufgebaut wird. Ein von einem CAD-Datensatz gesteuerter Laserstrahl verschmilzt bei Temperaturen von mehreren hundert Grad sehr dünne Pulverschichten. Die Bearbeitung erfolgt Schicht für Schicht in vertikaler Richtung.

Diese additive Fertigung hat gegenüber konventionellen Verfahren verschiedene Vorteile. Beschränkungen klassischer Produktion, die zum Beispiel bei Gussteilen Hohlräume oder Hinterschneidungen vermeiden muss, fallen weg. Jedes Bauteil lässt sich ohne Werkzeugwechsel anders herstellen als das vorherige. Dadurch wird zum Beispiel eine Kleinserien- oder Einzelteilfertigung attraktiver. Ersatzteile können bei Bedarf dezentral produziert werden und machen eine teure Lagerhaltung überflüssig. „Die Möglichkeiten der additiven Fertigung sorgen für eine erhebliche Flexibilisierung des Konstruktions- und Produktionsprozesses. Sie ist eine Schlüsseltechnologie zur Umsetzung der Hightech-Strategie ´Industrie 4.0`, die die Bundesregierung anstrebt“, sagt Udo Jung.

Bislang kommt das Metall-Laserstrahlschmelzen in der Luftfahrtindustrie sowie in der Zahn- und Medizintechnik zum Einsatz. Für die angestrebte Nutzung in Maschinenbau- und Autoindustrie fehlen wesentliche Kenntnisse zu passenden Fertigungsparametern. In dem Projekt sollen deshalb Fragen nach der optimalen Schichtdicke, der Positionierung im Bauraum und der Temperatur und Energiedichte des Lasers geklärt werden. Für gängige Werkstoffe wie Walzstahl oder Aluminium-Druckguss gibt es seit Jahrzehnten Kennwerte für Konstruktion und Auslegung eines Bauteils. Im Projekt wollen die Wissenschaftler solche zuverlässigen Werkstoffkennwerte auch für mit dem neuen Verfahren gefertigte Bauteile bereitstellen. „Dabei geht es um mechanische Eigenschaften wie zum Beispiel Zugfestigkeit, Steifigkeit und Elastizität, Zähigkeit oder Porosität“, führt Heinrich Friederich aus.

In mehr als 400 Einzelversuchen werden Bauteile aus einer Stahl- und einer Aluminiumlegierung experimentell untersucht. Erstmals wollen die Forscher das Verhalten der mit dem Laserstrahlschmelzverfahren hergestellten Bauteile auch per Computer simulieren und so die Zahl kostspieliger Versuche begrenzen.

„Wir werden die Ergebnisse in einer konkreten Handlungsanweisung zusammenfassen, nach der diese Bauteile mit zuverlässigen und reproduzierbaren Eigenschaften hergestellt werden können. Sie dient den Konstrukteuren als Mittel für die sichere Auslegung von Bauteilen mit hoher Prozesssicherheit und Qualität“, fasst Jung zusammen.

Das Forschungsvorhaben läuft zwei Jahre und hat ein Gesamtvolumen von 415.000 Euro. Es wird im Rahmen der hessischen „Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz“ (LOEWE) unterstützt.